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Abstract 

The regular and exact completions of categories with weak limits are proved to exist and 
to be determined by an appropriate universal property. Several examples are discussed, and in 

particular the class of examples given by categories monadic over a power of Set: any such a 
category is in fact the exact completion of the full subcategory of free algebras. Applications 
to Grothendieck toposes and geometric morphisms, and to epireflective hulls are also discussed. 
@ 1998 Elsevier Science B.V. 
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1. Introduction 

The notions of a regular and of an exact category are among the most interesting 

notions studied in category theory. In fact, several important mathematical situations 

can be axiomatized in categorical terms as regular or exact categories satisfying some 

typical axioms. Let us recall that a category is regular (see [l]) when 

(i) it is left exact, 

(ii) each arrow can be factored as a regular epi followed by a mono, 

(iii) regular epis are pullback stable, 

and is exact when moreover 

(iv) equivalence relations are effective (i.e. kernel pairs). 

Exact functors between regular or exact categories are left exact functors which pre- 

serve regular epimorphisms. 
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For instance, small regular categories are the basis for an invariant definition of 

first-order (intuitionistic) theories (see [ 11, 191). All monadic categories over a power 

of Set, and in particular algebraic categories, are exact. Grothendieck toposes are ex- 

act categories, and the only difference with algebraic categories is the behaviour of 

coproducts and the projectivity of the generators or, in other words, the facts that 

a Grothendieck topos has disjoint and universal sums and does not necessarily have 

“enough projectiues”. Other examples are: the dual categories of toposes - they always 

are exact categories and have enough projectives; the category of topological groups, 

which is regular, but not exact; the category of compact groups, which is exact. Finally, 

a large class of examples is given by abelian categories: an abelian category is an exact 

category satisfying moreover the typical axiom which holds in module categories, i.e. 

the set of homomorphisms between two objects is an abelian group and left and right 

compositions with any given map are group homomorphisms. 

As it is always the case in mathematics, when a new relevant structure emerges 

and begins to be studied as such, an immediate question is the study of the “j?ee” 

such structures. Of course, “free” refers to a given forgetml functor, and in the case 

of regular and exact categories there are several such forgetful functors whose cor- 

responding free functor (left adjoint to the forgetful) should be investigated, namely 
_ in increasing order of complexity - the ones into graphs, categories and left exact 

categories. They all exist for general reasons, and an explicit description of the last 

has been given in [7]. 

It has recently been observed that in the description of the free exact category over 

a left exact one given in [7], the fact that the starting category has limits is never 

fully used, and that in fact only the existence property in the definition of a limit is 

used. In other words, the construction of the free exact category over a left exact one 

only uses “weak limits”, that is, starting with a category with weak limits, the same 

construction gives a category with honest limits and which is exact. A bit different is 

the case of regular categories: the construction of the free regular category over a left 

exact one can be extended to categories with weak limits, but the construction should 

be slightly modified to get products. 

The natural question then arises to investigate the universal property of the con- 

structions for categories with weak limits, and the surprise is that the wished one, 

that is adjointness to the fortgetful into the 2-category of categories with weak limits 

and weak limits preserving functors, does not hold. More, whatever class of functors 

we take between categories with weak limits, provided it is stable by composition 

and it is such that the construction of the “free” exact category remains functorial, 

our construction will never give adjointness. However, it has been soon realized that 

there is another universal property, different from adjointness, which holds and deter- 

mines the construction up to equivalences - a quite unusual phenomenon in Category 

Theory, whose only ancestor we know is Freyd’s representation theorems in abelian 

categories [lo]. 

This paper is devoted to the study of such constructions, both for regular and exact 

categories, and of their universal property. The paper is organized as follows. 
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Section 2 is devoted to the explicit descriptions of the regular and exact completions 

of categories with finite weak limits, and to the characterization of categories which 

occur as such. We find the characterization of exact completions of categories with 

finite weak limits remarkable: an exact category is the exact completion, necessarily 

of its full subcategory of (regular) projectives, if and only if it has enough projec- 

fives - an axiom which, in the linear case, is the basis for homological algebra, and 

which for algebraic categories tells us that they are the exact completions of the jidl 

subcategories of free algebras. 

Section 3 deals with the universal property of the constructions: the key definition 

is that of a left covering functor, that is of a functor from a category with weak limits 

into a category with honest limits such that for any diagram, the canonical comparison 

from the image of any weak limit of the diagram to a honest limit of the image of the 

diagram, is a strong epimorphism. When the codomain category is regular or exact, this 

is precisely the class of functors which extend to exact functors from the completions, 

in an essentially unique way. We end up the section investigating the cocompleteness of 

the exact completions, a situation which often occur in the examples we have in mind. 

Finally, in Section 4 we discuss examples and applications. We already mentioned the 

case of algebraic categories and, more generally, of monadic categories over a power of 

Set: they all are exact completions of their full subcategories of projectives. This fact 

gives various characterization theorems, some already known and some new - notably 

the one characterizing localizations of algebraic categories - discovered in the meantime 

by the second named author (see [23]), but which we recall here for completeness and 

to emphasize the role of the theory developed in the first two sections in clarifying and 

unifying this matter. We also show that this role is played in Topos Theory, by giving 

new simple proofs of known facts concerning toposes as localizations of presheaf cate- 

gories and concerning geometric morphisms. We end up extending our theory of regular 

and exact completions to categories with all small weak limits, to cover a wider range 

of examples of regular completions: we show that in the monadic case the so-called 

“epireflective hull” of the full subcategory of the projectives is in fact also its infinitary 

regular completion, and hence enjoys an appropriate universal property. This applies, 

for instance, to the category of Stone spaces, to the dual categories of topological spaces 

and of sober spaces. We would like to mention a possible application which has been 

not yet explored, but which we feel it should: several examples of categories with weak 

limits which occur in “nature” arise in homotopy theory, as the homotopy categories of 

various categories of interest, such as topological spaces, groupoids, simplicial sets. Are 

their regular or exact completions of some help in homotopy theory? We do not know. 

A bit of history: at the 1991 Category Theory Conference in Montreal, the first 

named author telling about the fact that he had just observed, during a visit of Makkai, 

the existence of the regular and exact completions of categories with weak limits, asked 

for the universal property. The second named author then discovered it, and a quite 

complete treatment of it has been the subject matter of his 1994 doctoral disserta- 

tion [21] at the University of Louvain, under the supervison of Borceux, whom we 

thank for some useful discussions and for having arranged visits of the first named 
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author to Louvain-la-Neuve. In the meantime, Hu independently discovered the same 

universal property, and in [14] gave an elegant proof of it using duality theory. Unfor- 

tunately, his theory applies so far only to exact categories and to small ones, although 

it seems quite reasonable that it can be extended to locally small ones; moreover, it 

is not elementary, and so it does not eliminate the need of an explicit elementary de- 

scription. Hence, we decided to join to make available our theory with all extensions, 

applications and examples we have discovered so far. 

2. Regular and exact completions 

2.1. Weak limits and pseudo-equivalence relations 

Recall that a weak limit is defined as the usual notion of limit, except that one 

requires only the existence of a factorization and not the uniqueness. A first conse- 

quence of this fact is that a functor can admit several non-isomorphic weak limits; for 

example, in the category Set of sets, each non-empty set is a weak terminal object. 

The following is the expected condition for the existence of finite weak limits; we 

give some details because the way to build up a weak limit from weak products and 

weak equalizers will be useful in other sections. 

Proposition 1. The existence of weak binary products and weak equalizers implies 
the existence of all weakJinite non-empty limits. 

Proof. The existence of weak pullbacks follows as in the case of usual limits and in 

the same way binary implies finite. Now, if 9 : 52 -+ C is a functor defined on a 

finite category 9, let us consider a weak product indexed over all the objects D E 90 

with the corresponding projections 

for each arrow d : D + D’, consider the two parallel arrows in C 

rI YD 
5 YD’ 

DES YdnD 

and let 

be a weak equalizer of them. Since weak pullbacks exist as in the ordinary case, there 

exists a weak limit (E 5 &)dEBl of the diagram 
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It is now easy to check that the cone 

is a weak limit of 9. 0 

Observe that the statement that “pullbacks and terminal object suffice for finite limits” 

is not anymore true for the weak notion. We will call a category @ “weakly lex” if, 

for every hmctor _Y : 2 -+ C defined on a finite category 9, there exists a weak limit 

of 2, which we will denote by “wlim 9”. 

Recall that a regular epi is a map which is a coequalizer, and that an object P is 

(regular) projective when the covariant horn-functor preserves regular epis. 

Definition 2. Let C be a category and P be a full subcategory of C; we say that P 

is a “projective cover of C” if the following two conditions are satisfied: 
_ each object of IP is regular projective in @, 

- for each object X of @ there exists a P-cover of X, that is an object P of P and a 

regular epi P -+ X. 

Of course, a category @ admits a projective cover if and only if it has “enough 

projective?, i.e. every object is the codomain of a regular epi whose domain is pro- 

jective. Elsewhere a projective cover is called a “resolving set of projective? (see, for 

example, [lo]). The relation between two projective covers of the same category is 

clarified in the following proposition. 

Proposition 3. Let PI and p2 be two projective covers of a category 62; the splitting 

of idempotents of [FDI is equivalent to those of p2; in particular, tf the idempotents 
split in 62, the splitting of idempotents of P is equivalent to the full subcategory of 
all the projective objects of C. 

The relation between weak limits and projective covers is given in the following 

proposition. 

Proposition 4. Let _Y : 9 + C be a functor dehned on a jinite category 9 and 
suppose that it can be factored as 

where [FD is a projective cover of C and P 4 62 is the inclusion; if there exists wlim 9, 
then there exists also wlim 9’. In particular if @ is weakly lex, the same holds for p. 
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Proof. Let (rc~ : L + _S?D)D~~~ be a weak limit of 8 and consider a P-cover 

p : P + L of L; then (rc~p : P + _$?D)D~~~ is a weak limit of 9’: for any cone 

(rg : Q ---f _YD)~E~o on 9 with Q E P, the factorization r : Q --) L can be lifted to 

a factorization r’ : Q -+ P because Q is projective. 0 

A large class of examples occurring in nature of weakly lex categories is given by 

exact categories with enough projectives: if P is a projective cover of such a category, 

then P has all finite weak limits, by Proposition 4. 

Definition 5. A category [E is called “regular” (see [I]) when 

(1) it is left exact; 

(2) every effective equivalence relation (i.e. a kernel pair) has a coequalizer; 

(3) pullbacks of regular epis are regular epis. 

E is called “exact” when is regular and 

(4) every equivalence relation is effective. 

Functors between regular or exact categories are called “exact” when they preserve 

finite limits and regular epis. 

It is now quite an easy and instructive exercise to show that regular categories admit 

a (regular epi)-(mono) factorization, and that they have all the properties which allow 

the “calculus of relations”. In fact, in the presence of axiom (3), axiom (2) can be 

equivalently stated as 

(2’) every map has a (regular epi)-(mono) factorization; 

which is a bit redundant, but more illuminating. Also, a basic fact which illuminates the 

role of regular categories in categorical logic, is Joyal’s theorem that regular categories 

defined as those satisfying (l), (2’) and (3), where regular epis are replaced by “strong 
epis”, i.e. by those maps which do not factor through any proper subobject, agrees with 

the one given here, because in such a category every strong epi is in fact regular. The 

reader may consult [ 1, 4, 11, 171 for a more detailed account on regular and exact 

categories. Let us only mention here a large class of examples of exact categories, 

namely monadic categories over (a power of) sets, in particular algebraic categories 

and presheaf toposes, which always have enough projectives, and their localizations, 
which rarely have enough projectives. 

As we said, Proposition 4 implies that any projective cover of an exact category 

has all finite weak limits: just take projective covers of the honest limits. Our goal 

is to show that in fact this class of examples is the class of all possible examples, 
in the sense that any weakly lex category appears as a projective cover of an exact 
category. To have a better understanding of the construction, let us consider an exact 

category IE with a projective cover ip, and let us show how we can reconstruct E out 
of P: let A be an object of E; choosing a P-cover a : X + A of A, consider its kernel 

pair ao, al, and take a P-cover R of its domain; we obtain a parallel pair ro, rl : R 3 X 

in P, which still has a as a coequalizer and which is a “pseudo-equivalence relation” 
in the weakly lex category P, in the sense of the following: 
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Definition 6. (1) In a category C, a pseudo-relation on an object X is a pair of parallel 

arrows rg,rl : R 3 X; the pseudo-relation is a relation if ro and r1 are jointly manic; 

(2) the pseudo-relation ro,rl : R 2 X is 
_ “reflexive”, if there exists an arrow rR : X -+ R such that 

rOrR = 1~ = rirR, 

- “symmetric”, if there exists an arrow SR : R -+ R such that 

rOsR = 71, rlsR = r0, 

_ “transitive” if there exists a 

10 
P+R 

and an arrow tR : P + R such that f-020 = rOtR and r,Zl = rltR. 

weak pullback, 

Let us remark that the transitivity of a pseudo-relation ro, r1 : R 2 X does not depend 

on the choice of the weak pullback of ro and rl. Of course, a “pseudo-equivalence 

relation” is a pseudo-relation which is reflexive, symmetric and transitive. 

Now, in the case of the weakly lex category given by a projective cover P of an 

exact category E, we can recover all the maps in E between two objects A and B 

by means of the maps in P only, as follows: choose two P-covers a : X -+ A and 

b : Y + B of A and B, respectively, and consider the pseudo-equivalence relations 

associated with them as described above, say ro,rl : R 3 X and so,st : S 3 Y; then 

maps A 4 B in E are in bijection with equivalence classes of pairs of maps f : R -+ S 

and f : X -+ Y in P making commutative the two obvious squares, two such pairs 

f,T and g,S being equivalent if there exists an “half-homotopy” between them, i.e. 

a map C : X + S, whose compositions with the two structural maps are f and g, 

respectively. For, given an arrow tx : A -+ B in E, since X is projective and b is a 

regular epi, there exists f : X --+ Y such that aa = bf; this implies that bfro = bfrl 

so that there exists f” : R + M such that fro = bof and j”r1 = b,f (remember that 

bo, bl : A4 3 Y denotes the kernel pair of b); but also R is projective, so that there 

exists f : R --f S such that sf = f-, where s : S -+ M is a P-cover of M. Observe that 

so7 = fro and s$ = f’rl, and that a is the unique map induced by this pair on the 

coequalizers. 

If g, S is another pair of arrows making the three squares commutative, 
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then bf = bg; if we consider the manic part bo, bl : M 3 Y of the regular epi-jointly 

manic factorization of SO, sr : S 3 Y, we know that bo, bl : M 3 Y is the kernel pair 

of its coequalizer b. The last equation implies then that there exists o : X + M such 

that boa = f and bla = g; but X is projective and s is a regular epi, so there exists 

C : X -+ S such that SC = a; this implies that s0.Z = f and SIC = g, that is C is an 

half-homotopy, as required. 

The above argument suggests to consider the category P,, whose objects are pseudo- 

equivalence relations in P and whose maps are equivalence classes of pairs of maps 

as described above. We can then choose a fimctor 

sending each pseudo-equivalence relation in P into a coequalizer in E, and show that 

it is in fact an equivalence, since it is full and faithful, as we have just shown, and it 

is representative, because P is a projective cover of E. 

The remarkable fact we will discuss in this section is that the way to reconstruct 

an exact category E from a projective cover P we just described, can be abstractly 

repeated starting from any weakly lex category C, giving as a result a category with 

honest limits, which is also an exact category having @ as a projective cover, which 

we will call the “exact completion” of @. The way we will proceed is first to show 

that starting from a weakly lex category @ we can construct a regular category having 

@ as a projective cover, which we will call the “regular completion” of C; then by 

applying a known construction, the “exact completion of a regular category”, we will 

get the exact completion of the weakly lex category C. 

2.2. The regular completion of a weakly lex category 

If E is only regular with enough projectives, the subcategory P of projectives still has 

weak limits. Let us now discuss under what conditions we can recover the regular cate- 

gory IE from its full subcategory of projectives, provided they are enough. Since IE is not 

exact, the argument that pseudo-equivalence relations have coequalizer does not work 

anymore, since now only effective equivalence relations have coequalizer; however, if 

also the property that “every object of E can be embedded in a projective” holds, then 

we can argue as follows: given an object A of E, we can consider a factorization 

a:Pl -A-PO, 

where PO and PI are projectives and observe that, using the notations of Section 2.1, 

the pseudo-equivalence relation in [ID associated to the projective cover PI + A 

a0, al :R=:P, 

is now a weak kernel of the map a in the weakly lex category P. By repeating the 

argument in Section 2.1, if b is another such factorization of an object B, 

b:Ql -+BvQ,, 



A. Carboni, E. M. Vitalel Journal of Pure and Applied Algebra 125 (1998) 79-116 87 

then maps A + B in E correspond bijectively to equivalence classes of maps between 

the pseudo-equivalence relations associated, as described in Section 2.1. Observe that 

in this case, we can simplify the description of maps between the pseudo-equivalence 

relations using that now are weak kernels in P, simply by saying that such a map is a 

map o! : PI + Ql such that bcrao = btxal. The half-homotopy equivalence relation can 

be simplified too, because two such maps tl and a’ are equivalent with respect to the 

half-homotopy equivalence relation if and only if ba = bcr’. This suggests to consider 

the category lPreg whose objects are arrows a : P1 --+ PO of P, and whose maps a 4 b 

are equivalence classes of maps f from the domain of a to the domain of b such 

that bfao = bfal, where as, ai is a weak kernel pair of a in P, and the equivalence 

relation is the half-homotopy relation. We can then choose a functor 

P reg + [E 

sending each map between projectives into its regular image in E, and show that it is 

an equivalence, because every object of lE can be embedded in a projective. 

We can now try to repeat the construction just described, starting with any weakly 

lex category @, but there is a problem: we cannot show that Ctes has Jinite products. 
To show that it has finite products we have to modify the construction as follows. 

Definition 7. Let @ be a weakly lex category; we define a new category Greg (the 

“regular completion of C’) as follows: 
_ objects: An object of Cres is a finite family of arrows (fi : X + Xi)1 in @; 

- urrows: An arrow (fi : X -+ Xi)1 + (gj : Y + I$)J is an arrow CI : X --+ Y of @ 

such that gj ax0 = gj axi, for all j E J, where x0,x1 : x 2 X is a weak joint kernel 

of the family (fi : X + Xi), (i.e. it is weakly universal with respect to the property 

fix0 = fjxl, for all i E I): 

x 

xn XI 
II 

X?Y 

51 19, 

Xi r; 

Two arrows of this kind CI : X + Y and GL’ : X -+ Y are declared to be equivalent 

if gj C( = gj u’, for all j E J; 
_ composition and identities: the obvious ones. 

It is straightforward to verify that the previous data define a category. We will use 

the notation [a] : (fi ) 4 (gj ) for the equivalence class of 

c1 : (fi 1 X +Xi)l + (gj 1 Y + q)J. 

Observe that a pair x0,x1 : x =: X with the required weak universal property is clearly 

a pseudo-equivalence-relation and that if CI is an arrow of Greg, there exists an arrow 
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E : z + 7 such that mi = YicC, i = 0,l. Also observe that if C is already the 

full subcategory of projectives of a regular category E in which every object can be 

embedded in a projective, then the previous definition of C,, with families of arrows, 

and the one we gave at the begining with a single arrow, are in fact equivalent. We 

will see in the next theorem that in the converse direction, the need to take finite 

families of arrows as objects is due to the fact that we can then show that C,, has 

finite products. 

Consider now the Yoneda embedding in the presheaf category 9@ 

(ignoring size conditions, which for our finitary arguments are irrelevant), and observe 

that if 9 : 9 --) @ is finite diagram in C and L is any weak limit of 9, then the 

canonical comparison y(L) + lim y9 is a (regular) epi (that is, using the terminology 

which will be introduced in Section 3.1, the Yoneda embedding is a left covering 

functor). This simple observation is the key to show that C,, can be described (up 

to equivalences) also as follows: take the full subcategory of the presheaf category 

9C determined by those presheafs which appear at the same time as quotients of 

representables and as subobjects of finite (possibly empty) products of representables. 

In the proof of next theorem we will freely use both descriptions of Greg. 

Theorem 8. C,, is a regular category. 

Proof. Greg is a left exact category: given two objects (J;) and (gi) in Greg, their 

product is given by the following 

where X2X x, Y 3 Y is a weak product in C. 

If T is a weak terminal object in C, then the empty family of arrows with domain 

T, (T +)s is the terminal object of Greg. 

Consider now two parallel arrows [LX], [/I] : (J;) 2 (gi) in C,,; their equalizer is 

given by the following diagram: 

where e : E -+ X is a weak limit of the diagram 
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C,, has (regular epi)-(mono) factorization and regular epis are stable under pull- 
backs: the previous description of finite limits in Greg easily implies that the full 

inclusion of C,, in the presheaf category on C is left exact. Moreover, Greg is closed 

under subobjects in the presheaf category on C. These two facts imply immediately 

that Greg is a regular category (and that the inclusion in the presheaf category on C is 

an exact mnctor). 0 

Let @ be a weakly lex category and Greg its regular completion; the assignement 

f:X4Y “-P [fl:(lx:X~X)-,(ly:Y-,Y) 

defines a functor r : @ -+ Greg, which is full and faithful and preserves monomorphic 
families. It is now easy to show the following proposition. 

Proposition 9. Let T : @ -+ Greg be as previously dejned. Then: 

(i) @rcg has enough projectives and r(C) is a projective cover of C,,; 

(ii) each object of Greg can be embedded in a product of projective objects; 

(iii) a regular category E is the regular completion of a weakly lex category, if 
and only if it has a projective cover P such that every object can be embedded in a 

finite product of objects of P. When this is the case, E is equivalent to P,,. 

Proof. The first and the second points follow from the exactness of the full inclusion 

of C=reg in the presheaf category on Cc. The third point follows from the discussion at 

the beginning of this section. 0 

2.3. The exact completion of a regular category 

The notion of a regular category is precisely the one that allows to develop the 

calculus of relations as an equational calculus over graphs. Defining a relation R from 

X to Y as a subobject R L) X x Y, the existence in a regular category of regular 

images allows to define the composite of two relations as follows: if S -+ Y x Z is 

another composable relation, then the composite SR is 

where the rc’s denote projections from X x Y x Z and the I? denote the inverse image 

operators. Condition (3) of the definition of a regular category precisely means that 

the above composition is associative, determining in this way a category Rel(E) of 
relations of E, whose identity morphisms are given by diagonal subobjects. Notice that 

Rel(lE) has extra structure: 

(i) a local order preserved by composition (in other words, Rel(lE) is a locally 

ordered bicategory), which has finite intersections; 
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(ii) an involution ( )“, which is the identity on objects, and which preserves the 

local order; 

(iii) an embedding [E + Rel(lE), given by the construction of the graph; we will freely 

confuse arrows of lE with their graph in Rel(E). Working in Rel(E), we will denote 

(graphs of) arrows in E by lowercase latin letters and we will call them “mups”. 

The nice thing about this structure is that it allows to give purely algebraic proofs 

about facts in E, by using the following lemma, whose proof is an exercise. 

Lemma 10. Let IE be a regular cutegory; then: 

(i) an arrow R : X -+ Y of Rel( IE) is the graph of an arrow of IE (i.e. is a map) ifs 
it has a right adjoint in the bicategory Rel(E), iff R” is a right adjoint, which simply 

RR” 5 1, R”R > 1; 

(ii) an arrow f: X ---f Y of IE is a mono ifs f “f = 1 and is a regular 

ff” = 1; 

(iii) for every relation R : X -+ Y there exist a pair of maps f and g such 

R = gf”, f”f ng”g = 1. 

Such a pair is essentially unique (“tabulation” of R); 
(iv) a square in IE 

XAY 

epi ifs 

that 

h 1 1 f 
u-v 

9 

is commutative ifs kh” < fog and is a pullback ifs h,k tabulate f ‘g; in particular, 
the kernel pair of a map f : X -+ Y is a tabulation of the relation f a f; 

(v) the category [E is exact tf and only tf in Rel( E) equivalence relations (i.e. 
endomorphisms E such that 1 5 E, E < E”, EE 5 E), considered as idempotents, 

split: there exist relations P and Q such that PQ = 1 and E = QP (then, necessarily 
Pisamapp,sincelIE,andQ=p”). 

An obvious question is to give a characterization of those locally ordered bicategories 

B which appear as Rel( IE), IE being necessarily the subcategory Map(B) of B determined 

by the arrows with right adjoint. Several answers have been given to this question, 

notably the one due to Freyd (see [ 1 l]), who has been able to give a characterization 

in terms of the following axiom: 

RSnT < R(SnR”T) 

(which he calls “modular law”), beside the other obvious axioms. A further analysis 

of the modular law has been carried out in [9], where the whole theory of relations 
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has been reformulated in more flexible terms to cover other classes of examples (order 

ideals, abelian categories). 

One of the uses of the theory of relations is to describe the left biadjoint to the 

forgetful 2-functor from the 2-category of exact categories to the one of regular cate- 

gories, which we recall here, and which to our knowledge first appeared in [ 171. The 

reader may consult [ 1 l] or [9] for further details. The point (v) of the previous lemma 

tells that a regular category is exact if and only if equivalence relations split in the 

category of relations. This suggests that, if lE is only regular, we should define the 

exact completion by splitting the class of idempotents in the bicategory of relations, 

given by equivalence relations. This process will give us the bicategory of relations of 

the exact completion, and this last is then determined as its subcategory of maps. By 

using the characterization theorem of bicategories of relations of exact categories, one 

can prove that in fact we get in this way the “exact completion” [Eex/reg of the regular 
category IE. Explicitly: 

Definition 11. Let IE be a regular category; the exact completion of E can be described 

as follows: 
_ objects: An object of lEe+s is an equivalence relation E -+ X x X in [E; 
_ arrows: An arrow R : (X,E) + (Y,F) is a relation R : X -+ Y in E such that 

RE=R=FR 

and 

E < R”R, RR” 5 F; 

_ composition: Is the relation composition; 
_ identities: The identity on an object (X,E) is the equivalence relation E itself. 

The fact that the previous definitions 

egory E, precisely means the following. 

there exists a canonical embedding 

gives the exact completion of the regular cat- 

First observe that given a regular category [E, 

sending each object X in the discrete equivalence relation on it, and that it is an exact 

functor. 

Proposition 12. For each regular category IE and each exact category A, the embed- 
ding 

induces an equivalence between the category of exact jiinctors from iE to A and the 
category of exact functors from (Eexjreg to A. 
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Let us finish by recalling that the embedding of the 2-category of exact categories 

into the one of regular categories is full, and hence that the exact completion of a 

regular category is an idempotent process. 

2.4. The exact completion of a weakly lex category 

Starting with a weakly lex category C, we take the regular completion II! = C,, 

described in Section 2.2 and we can apply to it the exact completion lEe+s described 

in the previous section, so obtaining an exact category 

@ex = (@reg)ex/reg. 

The exact category so constructed is the exact completion of the weakly lex category 

C. The following lemma provides an explicit description of C,,. 

Lemma 13. When [E is a regular category, the canonical embedding [E + IEexjreg takes 
projective covers of [E into projective covers of [Eexjreg. 

Proof. Just observe that a regular epi P : (X,E) -+ (Y, Ay) in jEex,reg whose codomain 

is a discrete equivalence relation is a regular epi in E; hence, when the codomain 

projective in E, then it has a section s in E, and the relation Es is a section of P 
[E ex.,.eg. The remark that every object (X,E) of lEexlreg is covered by an object of 

namely by (I, AX), concludes the proof. q 

is 

in 

6 

From this lemma and Proposition 9, it follows that when E is the regular completion 

IE = Greg, then C is a projective cover of C,,. Hence, from the discussion in Section 2.1, 

we have that Cex can be described as follows. 

Definition 14. Let Cc be a weakly lex category; the category Cex (the “exact completion 

of C’) has 
- objects: An object of C,, is a pseudo-equivalence relation in C 

ro, r1 : R 3 X; 

_ arrows: An arrow between two objects 

ro,rl : R 3 X and SO,SI : S =f Y 

of @ex is an equivalence class of pairs of compatible arrows (f,f) as in the fol- 

lowing diagram: 

f 
R-S 
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where the pair ( f,f) is said to be compatible if sof = fro and stf = f r-1 ; such 

two pairs (f,T) and (g,g) are considered to be equivalent if there exists an arrow 

(an “half-homotopy”) C : X + S such that SO C = f and s1 C = g; 
- composition and identities: The obvious ones. 

Observe that the “half-homotopy” relation is an equivalence relation precisely be- 

cause the objects are pseudo-equivalence relations. The equivalence class of ( f,f) will 

be denoted simply by [f], since by the half-homotopy relation, each two pairs with the 

same first component are in fact equivalent. Observe also that no size conditions are 

requested on @ to construct Cex and that Cex is (locally) small if C is (locally) small. 

As we observed in Section 2.2 for the regular completion, the exact completion of 

@ also admits an equivalent description as a full subcategory of the presheaf category 

on @: C,, is in fact equivalent to the full subcategory of the presheaf category on 

C determined by those quotients of representables whose kernel can be covered by a 

single representable. 

The following proposition, whose proof is straightforward, sumarizes the properties 

of C,, we know so far. 

Proposition 15. Let C be a weakly lex category and Cex its exact completion. 
(i) The functor 

sending each object into the pair of identities, is full and faithful and preserves 
monomorphic families. Moreover, for each object Y of C, TY is a projective ob- 

ject in Cex. 

(ii) The image T(C) generates C,, via coequalizers, that is, if 

[f,fl : (ro,rl : R 2 Xl + (SO,SI : S 3 Y> 

is an arrow in Cex, then in the following diagram in C,, the two horizontal lines are 

coequalizers and the last vertical arrow is the unique extension to the quotient 

2 rx 

r;; 1 

z(R 2 X) 
rr1 

rf 
1 

[fl 

I& 
j-s1 

l-T y---&S =t y>. 

(iii) The image r(C) of the functor T : @ + C,, is a projective cover of C,,, so 

that Cex has enough projectives. 

Let us observe that there is no reason why r : @ + C,, should send weak limits into 

weak limits; for example, if T is a weak terminal in @, the terminal in Cex is given 

by the two projections T x, T 2 T and there is no reason to have an arrow in Cex 
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from T x, T =f T to T(T). An explicit counterexample will be given in Section 3.3. 

Nevertheless, let us observe that the corestriction of r : @ + C,, to the full subcategory 

of projective objects of Cex preserves finite weak limits. This can be easily deduced 

from the fact that an object ro,rl : R 2 X is projective if and only if it is contractible, 

that is there exists an arrow .Z : X + R such that ro C = 1~ and r-i C ro = t-1 Crl. 

Moreover, r preserves all the honest finite limits which turn out to exist in UZ; this is 

an easy consequence of a more general result contained in the next section. 

We can sumarize the whole discussion on the exact completion in the following 

theorem, which clarifies the nature of the property of an exact category of having 

“enough projective?. 

Theorem 16. Exact categories with enough projectives are the exact completions of 

the weakly lex categories of their projectives (more generally, of any of their pro- 
jective covers) and, conversely, each weakly lex category in which idempotents split 

appears as the full subcategory of the projectives of an exact category with enough 

projectives, namely of its exact completion. 

We end this section with some remarks on the exact completion of a regular category. 

The following proposition is quite straightforward. 

Proposition 17. Let [E be a regular category; [E is a rejective subcategory of the 

exact completion iEexIreg if and only if [E has coequalizers of equivalence relations. 

In particular, when the regular category lE is the regular completion of a weakly lex 

category 62, the condition on E of having coequalizers of equivalence relation can be 

completely expressed in terms of @ as follows. 

Proposition 18. Let C be a weakly lex category; its regular completion Qeg has 

coequalizers of equivalence relations tf and only tf the following condition holds: 

given a pseudo equivalence-relation ro, r-1 : R 3 X in @, there exists a finite family 

(qi : X + Qi)[ of arrows in C such that 
(I ) qiro = qiYI, for all i E I; 
(2) tf f : X + Y is such that fro = f’rl, then f qo = fq1 (where 

qo, q1 : x 3 x 

is weak universal such that qiqo = qiql, for all i E I). 

3. The universality of the completions 

3. I. Left covering functors 

Looking at the characterization of exact categories with enough projectives of the 

previous section, one would be tempted to believe that there is a biequivalence between 
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the 2-category of exact categories with enough projectives and exact functors between 

them, and the 2-category of weakly lex categories in which idempotents split and 

weakly lex functors between them, i.e. functors which send weak limits into weak 

limits. Unfortunately, the situation is not so simple, the precise nature of the universal 

property of the exact completion construction being not quite the expected one. Keeping 

in mind the proof of Proposition 4, the main definition turns out to be the following. 

Definition 19. Consider a functor F : @ + G with @ weakly lex and A a regular 

category; we say that F is “left covering” if, for all functors 9 : 9 + C defined on 

a finite category 9 and for all weak limits 

the canonical factorization p : FL + I? is a regular epimorphism. Here p is the unique 

arrow such that Fno = iz~p, where 

Observe that in the previous definition the second “for all” can be equivalently 

replaced by a “for one”. In fact, if 

are weak limits of 9: 9 -+ C, then there exists a factorization t : L --) L’; now, if the 

factorization p : FL + L” is a regular epimorphism, even the factorization p’ : FL’ -+ i 

must be a regular epimorphism because p’Ft = p. 

The previous definition can be adapted to a functor F : @ + A with A only lex, 

provided that we require that the map p is a strong epi. However, even assuming that 

p is a strong epi, if we assume that A is only weakly lex, this definition is not stable 

under composition (look once again at the example in Section 3.3). 

Proposition 20. Consider a jiinctor F : UZ + A with @ weakly lex and A a lex 

category; consider also the following conditions: 

( 1) F is left covering; 

(2) F is weakly iex; 

(3) F is left exact. 

One has that (2) implies (1); moreover, if@ is left exact, then the three conditions 

are equivalent. 

Proof. To prove that (2) implies (1) and, if @ is left exact, that (3) implies (2), it 

suffices to use the fact that, if there exists the honest limit, then weak limits are exactly 

the coretracts of the honest one. Now, assume @ left exact and F left covering; let us 

start showing that F preserves the terminal object T of C: by hypothesis, the unique 
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arrow q : FT + T (where F is the terminal object of A) is a strong epimorphism; 

in C, one has that T 2 T 5 T is the product of T with itself, so that the unique 

factorization FT + FT x FT is a (strong) epimorphism and then the two projections 

FT 2 FT x FT 2 FT are equal. But the pair ~i,n2 is the kernel pair of q, so that q 

is a mono and then an iso. 

To show that F preserves not empty finite limits, we need a lemma, whose proof 

(up to some minor modifications) is based on the same argument used in 1.829 of 

[ill. 

Lemma 21. Let F: @ -+ A be a left covering functor; F preserves the finite monomor- 

phic families. 

Let us come back to the proof of Proposition 20: F : C + A is a left covering 

functor between left exact categories and we have to prove that F preserves non- 

empty finite limits. Consider a functor _!Z : 9 -+ C defined on a non-empty finite 

category 53; consider also 1im.Y = (no : L + _YD)D~~,, and lim F_Y = (6 : 

I! + F(_YD))D~~,,: the family (7~ : L + ._YZD)D~~,, is monomorphic so that also 

the family (F7cb : FL -+ F(Z’D))bEsO is monomorphic by Lemma 21; for all D E 

90, we have that FQ = fib p, so that the unique factorization p : FL + t is a 

monomorphism; but, by hypothesis, it is a strong epimorphism, so it is an isomor- 

phism. q 

Let us remark that in the proof of Proposition 20 we have established a more general 

fact: a left covering hmctor from a weakly lex category to a lex category preserves 

all the finite limits which turn out to exist in the domain (i.e. being left covering is a 

kind of Jatness). 
In the next proposition and corollary we complete the comparison between left cov- 

ering functors and weakly lex functors. The proofs are simple and will be omitted. 

Let us only make clear that we call F “flat” if, for each functor Y : 9 --t @ with 9 

finite, and for each cone (ED : L -+ F(di4D))bEs0 over F.3 in A, there exist a cone 

(rc~ : L + 5?D)bEs0 over _Y in @ and a factorization t : 2 + F(L). Observe that this 

condition does not require the existence of weak limits in C. It means that, for each 

A E A, the comma category (A,F) is cofiltered. 

Proposition 22. Consider a functor F : C -+ A with @ weakly lex and A lex. Suppose 
that F factors through the full subcategory P(A) of projective objects (with respect 
to strong epimorphisms) of A and call F’ : C + P(A) its corestriction: 

(1) if F is left covering, then F’ preseroes finite weak limits of @; 
(2) tf A has enough projectives and Fi is weakly lex, then F is left covering. 

Corollary 23. Let F : @ -P A be a finctor with @ weakly lex and A lex; if’ the 
axiom of choice holds in A\ (that is each object is projective), then F is weakly lex 
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if and only if it is left covering, if and only if it is flat. If A is the category of 

sets, then F is left covering if and only tf it is a filtered colimit of representable 

fiinctors. 

In the next two propositions, whose proofs are also simple, we look at the stability 

of the notion of left covering functor. 

Proposition 24. Let B 2 @ 5 A be two functors with B and C weakly lex and G 

regular; tf G is weakly lex and F is left covering, then the composition FG : LE! + A 

is left covering. 

Proposition 25. Let C -% A 2 5 be two functors with C weakly lex and A and 5 

regular; tf F is left covering and G is exact, then the composition GF : C ---f B is 

left covering. 

The next theorem gives the most relevant property of left covering functors: 

Theorem 26. Consider a left covering functor F : @ -+ A, and let 

ro,r1 : R =f X 

be a pseudo-equivalence relation in C; consider the (regular epi)-(jointly manic) fac- 
torization of its image by F 

Fr,, 
FRX FX 

Then io,il : R_ 3 FX is an equivalence relation in A. 

Proof. The reflexivity and the symmetry of io, il : R_ I$ FX are easy. For the transitivity, 

consider a weak pullback 

and the transitivity morphism tR : P -+ R (that is ro tR = YO 10 and ~1 tR = rl Ii). 

Consider now the following diagram in A, in which both squares are pullbacks so that 
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the factorization u is a regular epi 

FR-_RYFX. 
P L 

Using now the fact that the mnctor F : C + A is left covering, we have that the 

factorization q : FP -+ S such that jo q = Flo and jt q = F11 is a regular epi. A 

diagram chasing shows now that 

(iodo, ~I~I)u~ = (io, i~)p&. 

But v q is a regular epi and (ia, if) is a mono, so that there exists an arrow h : Q -+ & 

such that (is do, i, dr) = (is, it) h. This shows that the relation is,it : & =f FX is 

transitive. 0 

Observe that this theorem applies when as F : C + A we consider the full inclusion 

of a projective cover of a regular category and, in particular, the embedding r : @ -+ 

The next proposition is crucial to make handy the notion of left covering functor. 

Proposition 27. Consider a functor F : @ ---f A with @ weakly lex and A regular; 

tf F is left covering with respect to binary products, equalizers of pairs of parallel 
arrows and terminal object, then it is left covering. 

Proof. We first need a lemma on regular categories, whose proof is a simple exercise. 

Lemma 28. Let A be a regular category: 
(1) 17 fo and f 1 are regular epis, then fo x f 1 is a regular epi; 

(2) in the following commutative diagram, where the two horizontal lines are 
equalizers, tf ,fo is a regular epi and fi a mono, then the unique factorization f 
is a regular epi: 

E--Ao: A, 

L -Bo: B,; 
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(3) if the following diagram is commutative, fo and fi are regular epis and f is 

a mono, then the unique factorization from the pullback of a0 and al to the pullback 
of bo and bl is a regular epi: 

Bo -B-B,. 
bo bl 

Coming back to Proposition 27, using the previous lemma it is straightforward 

to show that F is left covering with respect to n-ary products, equalizers and pull- 

backs. Consider now a functor 9 : 9 --t @ defined on a finite category 9. The 

result follows from the previous lemma, using the description of the weak limit of 

Y given in the proof of Proposition 1, and computing in the same way the limit of 

F2’. 0 

3.2. The universality of the completions 

In this section we show that the embeddings r : C 4 Greg and r : C -+ Cex of a 

weakly lex category in its regular and exact completions are universal in the sense of 

the following theorem. 

Theorem 29. Let @ be a weakly lex category and A be a regular one, and let 

r : @ --+ &es be the regular completion of C; then T induces an equivalence between 

the category of left covering functors from @ to A, and the category of exact functors 

from Geg to A. The same holds for the exact completion, with respect to any exact 
category A. 

Proof. Let us start by showing that, given a left covering ftmctor F : @ 4 A, where A 

is a regular category, there exists an essentially unique exact extension P : Cres --) A. 

Consider an arrow in Greg 

[xl : (5) ---) (Sib 

keeping in mind the description of Cres as a full subcategory of the presheaf category 

on C given in Section 2.2, if P : C,, + A preserves regular epis, mono’s and finite 

products and if P r N F, then $( fi) must be the image in A of 

(Fh) : FX + ljF(X) 
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and P[cr] must be the unique extension to the images as in the following diagram: 

F(Xi > 

F(T). 

This gives the essential uniqueness of F. 

Existence of F: The existence of F on the objects depends only on the regularity 

of A; if the extension P[cr] : p(fj) + P(gj) exists, then the functoriality of fi and the 

fact that p r II F are obvious. As for the arrows, 

[aI : (A) --f (Sj)> 

by the definition of an arrow in Qeg, we have that gj LXXO = gj 01x1, for all j E J, x0,x1 

being a joint weak kernel pair of (fi). Now take the kernel pair po, pl : N(p) 3 FX 

of (Ff;:) : FX + I&F(X) (that is of p); as fix0 = Jxl, for all i E I, and hence 

(FJ;) FXO = (Ff) Fxl, there exists a factorization x : Fx --+ N(p) such that pox = FXO 

regular epi, since F is a left covering and p1 x = Fxl ; The point is that the map x is a 

functor. We are now in the following situation: 

X 
FX--+ N(P)5 FX 2 p(f;:) 

PI 

1 
FCC 

A 
FY + F(gj). 

4 

Being 

N(p) 2 FX Pk(f;) 
PI 

a coequalizer diagram, to obtain the arrow P[a] : fi(J;) --t P(gj) it suffices to show 

that q Fa PO = q Fa ~1. Let us show that this is the case when we compose with x on 

the right and with n on the left; this is equivalent to show that Fgj Fa FXO = Fgj FLT Fxl, 
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for all j E J, and this follows from the condition on CI to be an arrow in Greg. Observe 

that this also means that 

Fx 3 FX P&h) 
Fx1 

is a coequalizer, because x is an epimorphism. 

P:C reg + A is exact: It is easy to show that @ preserves regular epis, using the 

fact that regular epis in Greg are of the form 

[lx] 1 (fj IX -Xi) + (gi :X + Yi). 

To show that P preserves finite limits, it is enough to show that P is left covering 

with respect to binary products, equalizers and terminal objects (see Propositions 20 

and 27). As for products, consider two objects (fi) and (gi) in Cree, and apply $ to 

their product. By definition of fi=, we obtain the following commutative diagram in G: 

F(Q) 0~) 
FX - F(X x Y) - FY 

P 
1 1 

r 

1 
4 

&ii) ‘F'[nxl Nm x (Sj)) - &I,). 
P[VI 

Consider again the canonical factorization s : F(X x Y) --+ FX x FY which is a regular 

epi (because F is left covering). Now the canonical factorization t : P(( J;:) x (gj)) 4 

p(h) x P(gj) satisfies t r = (p x q) s, and then it is a regular epi because s, p and q 

are regular epis. 

Now, let [a], [fl] : (fi) 3 (gj) be two parallel arrows in Qeg and let 

X, 4 Yj 

be the coequalizer (with the notations 

the following commutative diagram in 

FE : FX 3 FY 
W 

of Theorem 8). By definition of fi, we obtain 

A: 

Consider now the equalizer h : H -+ FX of (q Fct, q F/3) and the equalizer 1 : L -+ $( fi) 
of (P[a],&I]). The equalizer h is clearly also the limit of the diagram: 

F(g,a) 
FX = Fq 

F&B) 
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so that there exists a regular epi t : FE + H such that ht = Fe (because F is left 

covering). Moreover, the uniqe arrow r : H + L such that Zr = ph is a regular epi 

(see Lemma 28). Now let u : k(f ) ,e + L be the unique arrow such that lo = g[e]. 

One has that UY = zt (just compose with I), so that zi also is a regular epi. 

It remains to prove that fi is left covering with respect to the terminal object (T -+)0 

of Qeg. It is clear, because P(r +)0 is the image of the unique arrow t : FT -+ z, 

where z is the terminal object of A 

FT t cz 

But, by assumption on F, t is a regular epi and hence also m is a regular epi. 

The fact that composition with r is a full and faithful fimctor will follow from 

Proposition 3 1. 

Finally, to obtain the universal property of the exact completion, it suffices to com- 

bine the universal property of the regular completion just shown, with the univer- 

sal property of the exact completion of a regular category stated in Proposition 12. 

Using the description of the exact completion of a weakly lex category @ given in 

Definition 14, one can show that the exact extension P of a left covering fimctor 

F : 62 --+ A from C to an exact category A is defined by sending each pseudo-equivalence 

relation in @ into the coequalizer in A of its image under F, which is an equivalence 

relation in A by Theorem 26. •i 

Let us observe that the equivalences P,, z A and P,, z A described in Sections 2.2 

and 2.1 are nothing but the exact extension of the full inclusion of the projective cover 

P in the regular (respectively exact) category A. 

From the fact that the embeddings r : C -+ Greg and r : C + C,, are themselves left 

covering functors (and using the stability stated in Proposition 24), one has immediately 

the following corollary 

Corollary 30. The regular and the exact completions are determined up to equiva- 

lences by the universal property of Theorem 29. 

3.3. Further remarks 

As a left covering functor defined on a left exact category is exactly a left exact 

functor (Proposition 20) we have, as a particular case of Theorem 29, the main theorem 

contained in [7]; as it is shown there, the universal property of the exact completion 

of a left exact category becomes part of the left biadjoint to the obvious forgetful 
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2-functor 

EX + LEX. 

where EX is the 2-category of exact categories and exact functors and LEX is the 

2-category of left exact categories and left exact functors. 

The question naturally arising is then whether, with a good choice of morphisms 

between weakly lex categories, the universal property stated in Theorem 29 becomes 

part of the analogous biadjunction between exact categories and weakly lex ones. 

The answer is negative. For, suppose that we have organized the weakly lex cat- 

egories in a 2-category, say WLEX, and that the exact completion of a weakly lex 

category r : @ -+ C,, is the unit of a biadjunction 

EX = WLEX. 

Then, if A E EX and @ E WLEX, the category of morphisms WLEX(C, A) must be 

equivalent, via the composition with r : C -+ C,,, to the category of exact functors 

from Cex to A, which is equivalent to the category of left covering functors from C 

to A. Of course, the unit r : @ + C,, is in WLEX(@,@,,); but now, if we perform 

again the exact completion, we get a functor 

CL@ ex -A% ),x 

which must be in WLEX(C,(C,,),,) (being the composition of two morphisms). So 

that, (C,,),, being exact, the functor @ 5 C,, s(C,,),, must be a left covering functor, 

by Proposition 25. But, in general, this is not the case, as the following example shows. 

Using Theorem 16, as composition 

we can choose I? A A $A)>ex, where A is an exact category, p a projective cover 

of A and i : P + A the full inclusion. Now cover the terminal object r of A with 

an object T of P and a regular epi t : T -+ z, so that T is a weak terminal in P. 

r : A + A,, is left exact, so that Tr is a terminal object of A,,. If the composition 

Ti : P -+ A,, is left covering, then the unique arrow from T(iT) to Tr, that is 

Tt : TT + Tz, is a regular epi. But Tr is projective in A,, so that the regular epi Tt 

has a section, say s : Tz --+ TT, in A,,. Since r : A 4 A,, is full and faithful, this 

implies that t : T + z has a section in A. 

To show that, in general, this is not true, choose A as the category of rings and P 

as the full subcategory of projective rings; as t : T -+ T, one can choose the unique 

morphism Z -+ (0 = 1) which, b . o viously, has no section in A. The inclusion of the 

projective rings into the category of rings gives us also an example of fimctor r : @ + 

C,, which does not preserve the finite weak limits, as pointed out in Section 2.4. 

Of course, there could be a different construction which provides a biadjoint, de- 

pending upon the choice of morphisms between weakly lex categories. We only know 
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that our construction does not provide a biadjoint, whatever is the class of morphisms 

we choose between weakly lex categories. 

We conclude this part with some elementary facts on the exact completion which 

will be useful for applications. 

Proposition 31. Let P : @ --) Greg be the regular completion of a weakly lex category 

Cc and consider a left covering functor F: UZ + A with A regular; then the exact 

extension P : C,, + A described in Theorem 29 is a left Kan-extension of F 

along P. A similar result holds for the exact completion. 

Proof. Straightforward from Proposition 9 and from Proposition 15. 0 

From Theorem 16 we are able to recognize free exact categories; the analogous 

result for ftmctors is given by the following proposition. 

Proposition 32. The exact completion induces a biequivalence between the 2-category 

of weakly lex category in which idempotents split and weakly lex functors between 
them and the 2-category of exact categories with enough projectives and exact func- 
tors which preserve projectives between them. 

As a consequence, we have that two exact categories with enough projectives are 
equivalent if and only if they have two equivalent projective covers. 

3.4. Colimits in the exact completion 

In our main examples of exact completions of weakly lex categories, that is monadic 

categories over (a power of) Set, we have the following situation: the weakly lex 

category @ has small sums which are computed in Cex and Cex is cocomplete. This 

section is devoted to the study of this situation. 

Lemma 33. Let A be a category with weak kernel pairs and P be a projective cover 
of A; the full inclusion P -+ A preserves the sums which turn out to exist in P. 

Proof. We write the proof for a binary sum, but the argument is general. Consider a 

sum in P 

and two arrows in A 

with P-cover q : Q + X; we obtain extensions yi : P, -+ Q and y2 : P2 -+ Q such that 

qyi = xi and qy2 = x2. Since Q is in P, there exists y : P -+ Q such that YS, = yi 

and ys2 = ~2. Then qy : P -+ X is the required factorization. 
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Uniqueness: Suppose that f, g : P 3 X are two arrows such that fs, = gsl and 

fs2 = gs2. Consider two extensions 7: P --f Q and S : P -+ Q such that qf = f and 

49 = g. Now, qfsl = fs1 = gsl = q@l, so that there exists tr : P1 -+ N(q) such that 

qotl =fsl and qltl =@I, where qo,ql :N(q) 3 Q is a weak kernel pair of q:Q -+X. 
Similarly, there exists t2 : P2 -+ N(q) such that got2 =fs2 and q1 t2 = gs2. Now, from 

the first part of the proof, we obtain t : P --$ N(q) such that tsl = tl and ts2 = t2. 

Moreover, fsl = got1 = q&l and 7s~ = got2 = qots2, so that 7 = qOt because Q is 

in [FD; similarly, S = q1 t, because gsl = ql tl = q1 tsl and gs2 = q1 t2 = ql ts2. Finally, 

f = qf = qqot = qq] t = qg = g. 0 

Corollary 34. Let 62 be a weakly lex category; the embedding r: 62 -+ C,, preserves 

the sums which turn out to exist in C. 

Let us fix some notations for the next lemma: if A is a category, O(A) is the ordered 

reflection of A; if A is an object of A, Sub(A) is the ordered class of subobjects of A 

and A/A is the usual comma category. 

Lemma 35. Let A be a category with (strong epi)-(mono) factorization and P 
a strong projective cover of A; for each object A of A, Sub(A) and &p/A) are 

isomorphic ordered classes. 

Proof. First, Sub(A) -+ &!?/A): given a monomorphism X ---f A, we can consider 

a P-cover P -+ X of X and we obtain an element of O(lF’/A) taking the composite 

P -+ X -+ A; the order is preserved because the objects of P are strong projective. 

Second, &!?/A) -+ Sub(A): given an object P -+ A of P/A, we can take the manic part 

of its factorization; the order is preserved because, by definition, strong epimorphisms 

are orthogonal to monomorphisms. Clearly, Sub(A) ---f O( P/A) and O( P/A) 4 Sub(A) 

are inverses. 0 

Proposition 36. Let @ be a weakly lex category; if @ has sums and C,, is well- 

powered, then Cex is cocomplete. 

Proof. First, the coequalizers: Consider two arrows in C,, with their (regular epi)- 

(jointly manic) factorization 

B&A 

Now we can consider the equivalence relation js,jr : E =f A generated by the relation 

is, il : R 2 A, that is the intersection of all the equivalence relations in A which contain 

io, il : R 3 A. This intersection exists: by the previous lemma, Sub(A) is isomorphic to 
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&P/A) which is cocomplete because P has sums; so Sub(A) is also complete. Since 

Cex is exact, ic,ji : E =t A has a coequalizer which is clearly also the coequalizer of 

io,il :R =f A and then of a,b:B 2 A. 

Sums: Once again we sketch the proof for a binary sum, but it is general. Consider 

two objects ro,ri : R 2 X and SO,SI : S =f Y of Cex and the coequalizer 

which exists from the first part of the proof. Using Corollary 34 and Proposition 15, 

an interchange argument shows that Q is the sum of the two given objects. 0 

Coming back to Lemma 35, let us observe that, given an object A of A and 

a P-cover p : P + A, the composition with p gives a surjection from the object 

of p/P to the object of p/A. Using the axiom of choice, we can therefore inject the 

object of P/A in p/P. Moreover, if two objects of P/A are identified in O(p/P), then 

they are identified also in &P/A). So, by virtue of Lemma 35, we have proved the 

following lemma. 

Lemma 37. Let A be a category with (strong epi)-(mono) factorization and P a 
strong projective cover of A; A is well-powered if and only if for each P in P, 

&p/P) is a small set. 

Corollary 38. Let 62 be a weakly lex category; Cex is well-powered if and only if; 

for each X in G, &C/X) is a small set. 

4. Examples and applications 

4.1. Monadic categories 

Let T be a monad over Set and write EM(T) and KL(T), respectively, for the 

Eilenberg-Moore and the Kleisli category of T. It is well known that EM(U) is an 

exact category and that KL(T) is a projective cover of it, so that by the characterization 

theorem, EM(U) is the exact completion ofI(L(U). Hence, in particular, a categories of 

algebras is “the exact completion of the category offree algebras”, quite a remarkable 

fact. This statement, in the full generality of the monadicity notion, tells us also, for 

instance, that “the category of compact Hausdorff spaces is the exact completion of 
the category of extremally disconnected spaces” (see e.g. [16] for the monadicity of 

compact Hausdorff spaces as well as for the projectives there). 

Let us now show how the theory so far developed provides a very simple proof of 

a known characterization (see e.g. [a]) of categories monadic over Set (see [22] for 

more details). We begin with a simple lemma, whose proof is straightforward. 
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Lemma 39. Let @ be a category. The following conditions are equivalent: 

(1) @ is equivalent to the category KL(T) for a monad U over Set; 

(2) there exists an object G E @ such that 

(i) for each set I, the I-indexed copower I l G of G exists; 
(ii) @ is locally small, and for each object X of @ there exists a set I such 

that X z I l G. 

Theorem 40. Let A be a category. The following conditions are equivalent: 

(1) A is equivalent to the category of algebras EM(U) for a monad T over Set; 

(2) A is a locally small exact category with a projective regular generator, where 
regular generator means an object G such that 

(i) all copowers of G exist; 

(ii) for all objects A of A there exists a set I and a regular epi 

Proof. The implication (1) + (2) being obvious, let us show the implication (2) + (1) : 

Let @ be the full subcategory of A spanned by I l G for I E Set; @ is a projective 

cover of A. But a3 is equivalent to KL(U) and IU(U) is a projective cover of EM(U). 

0 

Observe that the characterization theorem can easily be generalized to monadic cat- 

egories over a power of Set, simply by requiring a set of projective regular generators. 

In the general case where lE is a topos, there are two related examples of monadic 

categories over [E, which in spite of the failure of the axiom of choice can be proved 

to be exact with enough projectives, and hence the exact completion of the projectives. 

One is the category of algebras for the covariant power set functor, i.e. the category 

SL(lE) of sup-lattices in lE, whose full subcategory of projectives is the splitting of the 

idempotents of the category of relations of [E (see [22] for a proof). This last, whose 

objects are also called “infosys”, has been recently studied in [20], where, in terms of a 

sup-lattice property, the “constructive complete distributivity” has been characterized. 

The other example is the category of algebras for the “double dual” monad on lE, 

which is well known to be the dual category lE Or of the topos IE. Easily one can show 

that PP is an exact category with enough projectives. 

Finally, we should mention a new result obtained in a very simple way using the 

universal property of the exact completion; we refer to [23] for the complete details. 

Theorem 41. Let A be a category. The following conditions are equivalent: 

(1) A is a localization (resp. an epireflective category, i.e. a rejlective full sub- 
category with the unit of the reflection a regular epi) of a category of algebras 
EM(U) for a monad U over Set; 

(2) A is a locally small exact category (resp. regular category with coequalizers 
of equivalence relations) with a (projective) regular generator. 
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We mentioned the case of epireflective categories of monadic ones, although it is 

already known, because an interesting aspect of the proof contained in [23] is that 

the same proof gives at once the known case and the not known one. Also this 

characterization theorem generalizes at the case of categories monadic over a power 

of Set. 

4.2, Presheaf categories 

We can use our theory to give a new proof of a well-known characterization of 

presheaf categories (cf. [5, 22]), which has the advantage to be appliable to the study 

of geometric morphisms of toposes, and that will be used in the next section. 

Let ID be a small category and FamD its sum-completion. FamD can be described 

as the category whose objects are families (Di)i,I of objects of D indexed by a set I, 

and whose arrows 

(f,4):(~i>iEI + (Dj1jE.l 

are given by a function 4: I --+ J and a family 

of arrows of D. B = FamD is an (in$nitary) extensive category (see [8]) in the sense 

that has small sums, and for all families (Xi)iEI of objects, the functor sum 

is an equivalence. FamD is naturally equivalent to the full subcategory of 9lD spanned 

by sums of representable presheaves. This implies that FamD is a projective cover 

of PD. 

Lemma 42. Let B be a category. The following conditions are equivalent: 

(1) B is equiuazent to the category FamD for a small category D; 
(2) B is locally small with sums, and there exists a small subcategory B of B con- 

sisting of indecomposable objects, i.e. of objects for which the covariant horn-functor 
preserves sums, such that each object X is isomorphic to a sum of indecomposables. 

Observe that in an extensive category, an object is indecomposable if and only if it 

is not initial and it cannot be decomposed as a sum of not initial objects. 

Corollary 43. Let A be a category. The following conditions are equivalent: 
(1) A is equivalent to the category of presheaves on a small category; 
(2) A is locally small exact extensive, and has a set G = (Gj)J of projective and 

indecomposable generators (here generators mean that maps out of them are enough 
to distinguish equality between arbitrary pairs of maps). 
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Proof. Calling Y the full subcategory of A determined by generators, then the presheaf 

category on 3 and the category A are exact categories with equivalent projective 

covers. For, since A is extensive and each object of 9 is indecomposable, the extension 

to FamS of the inclusion of 9 in A is full and faithful; moreover, since each object of 

Y is projective, Fan@ is a full subcategory of projectives in A; finally, one can show 

that Fam% is a projective cover of A, using that the objects in 3 are generators, and 

that in any (finitary) extensive exact category every epi is regular (see [ll, 1.6521, for 

an elementary proof of the last sentence). q 

Observe that any extensive exact category is in fact cocomplete, since using ex- 

tensivity and exactness one can show that the usual way to construct coequalizers of 

parallel pairs f ,g as the quotient of the equivalence relation generated by the image 

of the map (f, g), still works. 

Observe also that a category satisfying condition (2) of the corollary is monadic over 

a power of Set, because by extensivity a set G of generators is also a set G of regular 

generators; in other words, the only two differences between categories monadic over 

a power of Set and presheaf categories are in the extensivity of the sums and in the 

indecomposability of generators. 

Finally, let us observe that the extensivity and exactness conditions in Corollary 43 

could be weakened using the existence of projective and indecomposable generators, 

so allowing a precise comparison with the known characterization of [5], but we do 

not enter here in this analysis. 

4.3. Grothendieck toposes 

Let us recall that a Grothendieck topos is a locally small category A satisfying one 

of the following three equivalent conditions: 

(1) A satisfies Giraud axioms for a topos, that is A is an infinitary extensive exact 

category with a set of generators; 

(2) A is a localization of a presheaf category; 

(3) A is equivalent to the category of sheaves on a site. 

Usually (see e.g. [4, 15, 18, 191) the proof of the equivalence runs as follows. 

First, one proves that the associated sheaf functor exhibits a category of sheaves as a 

localization of the corresponding presheaf category (that is, (3) + (2)). Second, one 

observes that Giraud axioms are verified by a presheaf category and that they are stable 

under localizations (that is, (2) + (1)). Third, starting from the family of generators 

involved in Giraud axioms, one constructs a site and an equivalence between the given 

category and the resulting category of sheaves (that is, (1) + (3)), and this is the 

part which classically is called “Giraud theorem characterizing toposes”. We think it 

is of some interest to have a direct proof that (1) implies (2), using that a presheaf 

category is an exact category with enough projectives, and hence using our theory of 

left covering fimctors. 



110 A. Carboni, E. M. Vitalel Journal of’ Pure and Applied Algebra I25 (1998) 79-116 

For this, we look more carefully at the sum-completion FamD of a small category D. 

We know that FamD is (equivalent to) a projective cover of ?X!I, so that it is a weakly 

lex category. Let us describe explicitly some weak finite limits in FamD, identified with 

the full subcategory of 9lD spanned by sums of representable fi.mctors. Each time, one 

can consider the corresponding honest limit in 9XD and use the canonical presentation 

of a presheaf as colimit (that is quotient of a sum) of representable presheaves. We 

give directly the resulting formula. 

A weak terminal object in Famed is the coproduct JJX D(-,X) of all the repre- 

sentable presheaves. 

A weak product of two objects D(-,A) and D(-,B) in Famed is the coproduct 
” 

u D(-,X) d d m exe over all the pairs of arrows A LX + B in ID, with X varying 

in Do. 

A weak equalizer of two parallel maps U, 2) : D(-,A) 12 ED-, B) in FamD is the 

coproduct u D( -,X) indexed over all the arrows x :X --f A in D such that ux = ux 

with X varying in DO. 

So, we have described binary products and equalizers of objects and arrows of Famed 

coming from D via the (Yoneda) embedding D + FamD. 

Lemma 44. Let D be a small category and A be a left exact extensive (“lextensive”) 

category; a sum-preserving functor F : FamD -+ A which is left covering with respect 

to binary weak products and weak equalizers of objects and arrows of FamD coming 

from D, is in fact left covering with respect to all binary weak 

equalizers. 

Proof (Products). First of all observe that extensivity implies that 

holds (see [8]): given an object X and a family of object (Ak) in a 

then the canonical map 

products and weak 

the distributive law 

lextensive category, 

is invertible. Then observe that in FamD the following form of distributivity with 

respect to weak products holds: 

“for each choice of weak products X x, Ak, then the coproduct uk (X x ,,, Ak) is also 
a weak product X x, uk Ak”, 

where now X and At are families of objects of D. The result then follows by applying 

the previous two observations and from the fact that a coproduct of strong epis is a 

strong epi. 

Equalizers: the result follows first by observing that in a lextensive category, an 

equalizer of the diagram of the kind 



A. Carboni, E. M. Vitalel Journal of Pure and Applied Algebra I25 (1998) 79-116 111 

is a coproduct of the equalizers 6?k of the components f ik, gik; then by observing that 

in FamD the following statement holds: 

“for each choice of weak equalizers ek of the components f ik, gik, then the coproduct 

of the ek is a weak equalizer off, g”. 0 

The next proposition should also be compared with the characterization of localiza- 

tions of monadic categories over a power of Set: the only difference is the extensivity 
of the sums. 

Proposition 45. Let A be a locally small extensive exact category; if A admits a 

set { Gi}, of generators, then A is a localization of a presheaf category on a small 

category. 

Proof. Consider the full subcategory D of A whose objects are the generators Gi and 

call F : D 4 A the inclusion. Using that A is extensive exact, we already observed 

that in A every mono is regular, and hence that every epi is regular, so that every 

object is canonically a quotient of a sum of generators; it follows that the set {Gi}, 

is dense, i.e. that the functor A(F-, -) : A -+ BD is full and faithful. We can now 

factor the Yoneda embedding y : D + Y’D as 

D 3 FamD 5 (FamD),, N PD. 

We can now define a left adjoint P to A(F, -.-) in two steps: first, consider the left 

Kan extension F’ : FamD -+ A of F along 9 (that is, the sum-preserving extension 

of F) and then take the left Kan extension P of F’ along r. By Proposition 31 and 

Theorem 29, to prove that P is left exact, it suffices to prove that F’ is left covering. 

Keeping in mind the description of weak limits in FamD, we have to look at the 

following three canonical factorizations: 

UGi+l, JJGi+CXD, fl Gi + Eu,,,, 

where C,D,u,v are objects and arrows in D; the first coproduct is indexed by all the 

objects Gi in ED; the second coproduct is indexed by all the pairs of arrows C - 

G, -+ D in D with Gi varying in D; the third coproduct is indexed by all the arrows 

w : Gi + C such that uw = v w with Gi varying in D; 1 is the terminal in A; C x D is 

the product in A; E,, -+ C 2 D is the equalizer in A. These three arrows are regular 

epis exactly because the fami;; { Gi}l generates 1, C x D and E,,. By Proposition 27 

and Lemma 44, we have that F’ is left covering and the proof is complete. 0 

4.4. Geometric morphisms 

In this section we revisit the study of geometric morphisms from a topos d to a topos 

of presheaves HD, using the matter developed in the last two sections. We essentially 

follow the terminology of [18]. 
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Definition 46. Let D be a small category, y : D -+ 9YD be the Yoneda embedding 

and A be a cocomplete left exact category; a functor F: D -+ A is flat if its left Kan 

extension j: P’D --+ A along y is left exact. 

Observe 

in fact P, 

A+YD. 

that in the previous definition one can equivalently require that P is exact; 

being computed pointwise, has always right adjoint given by A(F-, -) : 

Proposition 47. With the notations of the previous dejnition and supposing A exact, 

we have that F is Jlat if and only if its sum-preserving extension F’:FamD + A is 

left covering. 

Proof. The “if” part follows from Proposition 31 and Theorem 29, and the “only if” 

part follows from Proposition 25. q 

Definition 48. Let D be a small category and A a left exact category. A functor 

F: D + A is filtering if the following three conditions hold: 

(1) the family of all maps FX + 1 (with X varying in Do) is epimorphic, 

(2) for each pair A,B in Do, the family of all maps 

(Fu, Fv) : FX + FA x FB 

(with A AX 2 B in D with X varying in Da) is epimorphic, 

(3) for each pair u, v:A 3 B in Dt, the family of all maps FX + E,,,, (induced via 

the equalizer E,, -+ FA 2 FB by maps w : X -+ A in D such that uw = VW with X 
FV 

varying in II&) is epimorphic. 

Proposition 49. Consider a functor F : D + A with D small and A an exact extensive 

category; let F’ : FamD -+ A be the sum-preserving extension of F; then F is jltering 

if and only if F’ is left covering. 

Proof. Recall that in such a category A every epimorphism is regular. Keeping in 

mind the description of weak limits in Famg given at the beginning of Section 4.3, 

the three conditions of the previous definition are equivalent, respectively, to the fact 

that F’ is left covering with respect to the terminal object, products of objects coming 

from D and equalizers of arrows coming from ED. The result immediately follows from 

Lemma 44 and Proposition 27. q 

From Propositions 47 and 49, we obtain an easy proof of the well-known character- 

ization of geometric morphisms A + SD in terms of filtering functors ID -+ A; our 

proof holds if A is an extensive exact locally small category, which is more general 

than a cocomplete elementary topos (cf. Theorem 1, p. 399 of [ 181). We think that 

Proposition 49 could contribute to clarify the definition of filtering functor. 
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4.5. The epireflective hull 

In order to cover more examples, we need an extension of our theory. 

Definition 50. A “completely regular category” A is a category which is complete 

and regular and such that the following condition holds: if 

(Pi% + &)I 

is a family of regular epi’s, then the unique map 

yPi:IJIX,+nK 
I 

is again a regular epi. 

The above condition is already known in the context of abelian categories as the 

condition Ab4* (see [13]). If the family is finite, the condition is of course redundant, 

but if the family is infinite, the condition cannot be deduced from the completeness 

and the regularity of the category: as pointed out to us by F. Borceux, localic toposes 

are usually not completely regular categories. 

Let us consider now a category @ with all small weak limits; we can construct C,ys 

as in Definition 7, but an object is now a small (but not necessarily finite) family of 

arrows (fi : X 4 Xi)r. Clearly, C,ys is a complete and regular category. Moreover, 

using once again the fact that a regular epi is, up to isomorphisms, of the form 

[lx] 1 (fj IX + Xi), + (gj IX + Yj)J, 

it is quite obvious to prove that Crys is a completely regular category. As in Proposi- 

tion 9, each object of Czs can be embedded in a product of projective objects, but this 

product can now be infinite. Also the universal property of the embedding r : @ --+ Ccg 

needs a modification as follows: 

“for each completely regular category A, the canonical embedding 

induces an equivalence between the category of functors F : C --+ A which are left 
covering with respect to all small weak limits, and the category of exact continuous 
functors P: C& --b A”. 

The characterization (cf. Proposition 9) is a bit more subtle: the obvious thing is 

to require that the category A is completely regular. But in this case this additional 

assumption can be avoided and A can be taken as a complete and regular category, 

because the extension P : P’Fg -+ A of the full inclusion F : P -+ A can be built up 

directly, without passing through the universal property of r : P -+ Pgs. 

We now point out some elementary properties of the notion of completely regular 

category. First of all, an example: clearly, the category Set is completely regular, 
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because in Set epi means surjective and, since limits are computed pointwise, also 

presheaf categories are completely regular. 

Proposition 51. Let U he a monad on a completely regular category A; tf T sends 

regular epis into regular epis, then EM(U) is completely regular. 

Proposition 52. Let i : A w B he a rejective subcategory and let r: IEk + A be the 

rejector: if B is regular and r is an “epireflector”, that is the units nB : B + i(rB) 

are regular epis, then i : A + B preserves regular epis and A is regular. 

Corollary 53. Let i : A - B be an epirejlective subcategory of a completely reg- 
ular category iEB (with enough projectives); A is completely regular (with enough 

projectives). 

In particular, this proves that the category of Stone spaces is completely regular 

with enough projectives: in fact, it is well known that it is an epireflective subcategory 

of the category %?X of compact Hausdorff spaces, which is monadic over Set, the 

reflector being the Stone space q(X) of connected components of X. 

Since by a theorem of Gleason (see [ 161) we know that projectives in 59X are 

exactly the extremally disconnected spaces, which are contained in the category of 

Stone spaces, and since a standard argument shows that each Stone space can be 

embedded in a (eventually infinite) product of projective objects (the product of as 

many copies of the two-point discrete space as the points of the Stone space), we 

know that the category of Stone spaces is the regular completion (in the infinitary 

sense) of the category of exfremally disconnected spaces. 

The example of Stone spaces leads us to come back to the problem, discussed in 

Proposition 17, of the reflectivity of Qeg as subcategory of C,,, which we will assume 

to be replete. Our aim is to show that, under some assumptions on the size of @, 

CEs is epireflective in Cex, and that it is the epirejective hull of @ in Cex (cf. [12]). 

Lemma 54. Let @ be a weakly lex (complete) category; Qeg (C,yJ is closed under 
subobjects in Cex. 

Proof. Let (fi :X + Xi), be an object of Qeg and x0,x1 :x 3 X its embedding in C,, 

(that is x0,x1 is a weak universal pair such that 5x0 = J;x,, for all i E Z); consider 

now a monomorphism in Cex 

and the object (fi f : Y --+ Xi), of Cres together with its embedding in Cex yo, yt : r 3 Y 

(that is, yo, yr is a weak universal pair such that fi f yo = fif y1, for all i E I). It is 

easy to see that ra, q : R 2 Y is isomorphic to ya, yt :? 3 Y. 17 
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Proposition 55. Let Cc be a weakly complete category and suppose that Cex is well- 

powered; C& is the epirejective hull of @ in Cex. 

Proof. Since C is weakly complete, C,, is complete and moreover it is completely 

regular. c Es is then closed in C,, under the formation of products (because the em- 

bedding Ker: UZFs -+ Qx is continuous), and of intersections, which exist because C,, 

is well powered. Hence, a standard argument shows that E = 02;s is (epi)reflective in 

A = &: for, since the reflectivity is equivalent to IE having coequalizers of equiva- 

lence relations, let R 3 S be an equivalence relation in E and let c : S + C be the 

coequalizer in A; define T as the intersection of all subobjects of C in E through 

which c factors; the factorization of c through T is the coequalizer in E. 

Using again Lemma 54 and the characterization of regular completions is now easy 

to see that E is the epireflective hull of C. 0 

Further examples of infinitary regular completions are provided by a recent paper [3], 

where the authors point out that some other examples of monadic categories over sets, 

the dual category 9.92 of grids, and the category 89 of frames, have as epireflective 

subcategories two quite important categories, namely the dual category TopoP of topo- 

logical spaces, and the dual category SoboP of sober spaces. What we like to point out 

here, is that in fact more is true: they are not just epireflective, but in particular they 

are the epirejective hull of the projectives, as it can be easily shown, This in particular 

means that they are the infinitary regular completions of the categories of projectives. 

This is not for free, since, for instance, the category of torsion-free abelian groups is 

epireflective in abelian groups, but is not the epireflective hull of the projectives (ra- 

tional numbers is a torison free, but cannot be embedded in a product of free abelian 

groups). This remark means that exact functors from these categories to completely 

regular categories are determined by their restriction to the subcategory of projectives. 
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